HLA Object Moddl Template References

Department of Defense

High Level Architecture
Object Model Template

Version 1.1

12 February 1997

HLA Object Moddl Template References

HLA Object Moddl Template References

Table of Contents

[O] YAV @] 5 5
L. PU R P O SE .o 8
2. BA CK G ROUN DD i e e e e e e e e 2
2.1 OBIECT MODEL TEMPLATE RATIONALE 1.ttt ettt ettt ettt e e e e e e e eeeenens 10
2.2 FEDERATION OBJIECT M ODELS. ... utuititititiittt ettt ettt e et ettt e e e e e et e e e e e e e e nenenenans 10
2.3 SIMULATION OBIECT M ODELS. ..ttt ettt ettt ettt ettt e e ettt e e e e e e e e e e e e e enenenens 11
2.4 RELATION TO OBJECT-ORIENTED OBJIECT M ODELS .. e tutititttitit ittt eteteteteaet ettt eteteteteteteteaeteteteteteretenenenns 11
3. HL A OMT COMP ONENT S e e e e e e e e e 5
3.1 OBIECT CLASS STRUCTURE T ABLE. .. uiuititititiitt ettt ettt ettt ettt ettt ettt et et e eaenenenens 15
N I A T o 01 TcT =] = =T 15
T 2 = o] F <3N o] 1 0= | 17

T IR N T LTS o T O 1 =T - VT 20
TNt I T 1] o] = PP 22
3.2 OBIECT INTERACTION T ABLE ..t ututuitititttttt ettt ettt ettt et e e ettt t e e e e e e e et e e e e enenenens 23
I T [0 1= = o] = =T 23
T = o] [<3N o] 1 0= | 26
T2 B N [od LTS o] T O 1 (=T - VT 29
G T 1 1] o] 1= PPN 30
3.3 ATTRIBUTE/PARAMETER TABLE. . .tuittitititit et etet et ee et et e st et et et et e e s e e e et ea et e ta et e eaeensen e e aasastnaenns 32
G T I W o [0 1= = = o] = = 32

T I = o] F TN o] 1 0= | 33
T R I N (o1 LTS o] T O 1 (=T - VT 37

G T T 1 1] o] 1= S 38
3.3.5 Attribute/Parameter Table SUDCOMPONENES.........cooeiiii i 40
3.3.5. 1 PUIPOSE RaALI ON@IE. ... ettt e e et e e e et et 40
3.3.5.2 Enumerated DatatyPe Tabl €. ... it 40
3.3.5.3 Complex DatatyPe Tabl e, et 41

4. FOM/ISOM LEX I C ON . e e e e e 36
o o == 01 = 2 Y) N I =S 46
S I =TI = T I 46
4.2.1 ODbjeCt Class DefiNitiONS.uuuuuiiii et 46
4.2.2 Object INteraCtion DEfiNitiONS.uuiiiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e aae e 47
4.2.3 Attribute/Parameter DEfiNITIONS. ouiiee e ettt e e e e e e e e e e aaas 48
APPENDIX A: TABLE ENTRY NOT AT I ON o e 49
APPENDIX B: ATTRIBUTE/PARAMETER BASETYPES. ... i 40
A C R ON Y M S e e 52

REF E R EN CE S e e e 53

HLA Object Moddl Template References

List of Tables

TABLE 3-1. OBJECT CLASS STRUCTURE TABLEituiitiiiitieet ettt e et e e e et e e e e e e e e et e e e e e ea e e e e eaeeneens 18
TABLE 3-2. OBJECT CLASSSTRUCTURE TABLE - SOM EXAMPLE ... couiiiiiiiiiieie et 23
TABLE 3-3 OBJIECT INTERACTION TABLE ...t uittttieitte et et et ettt e et et e et e e e e et e et e e e e e e ea e e e eaeenaens 27
TABLE 3-4. OBJECT INTERACTION TABLE - SOM EXAMPLEiuuiiiiiiii ittt et e e e e e enee e 31
TABLE 3-5. ATTRIBUTE/PARAMETER TABLE .. .ittuittitiaettttaeettti e ettt aeeettaeeeat s eeaete e eeett e e eeetn e eeetnaeaesennns 34
TABLE 3-6. ATTRIBUTE/PARAMETER TABLE - SOM EXAMPLE .. .cuutiiiiiiiieiii ettt eanas 39
TABLE 3-7. ENUMERATED DATATYPE TABLE. . .itutit ittt ettt eeaneete et e et e et e etaeansetn e et eanaesneeteenaeeneeeeeneen 40
TABLE 3-8. ENUMERATED DATATYPE TABLE - SOM EXAMPLE.ctuiiiiiteetieie et e en e e e 41
TABLE 3-9. COMPLEX DATATYPE TABLE ...uititiiitie ettt et ettt et et et et et e et e e e e e ea e e e e e e enaens 42
TABLE 3-10. COMPLEX DATATYPE TABLE - SOM EXAMPLE.uituiititieet et et e et e e e e e e e e e e enneens 44
TABLE4-1. OBJIECT CLASSDERINITIONS ...tuituttietteei ettt ee e ee et e et et e e et et e e e e e e e e e e e e e e e e eaeeneens 47
TABLE 4-2. OBJECT INTERACTION DEFINITIONS. ... ctuituitiettette et ettt et et e et e e e e e e e e e e e e e e e e e eenaaens 47

TABLE 4-3. ATTRIBUTE/PARAMETER DEFINITIONS. .. ctuttutittttettetteetteetae et eetneeteetaetnestesteesneeteeneereesaesnees 48

HLA Object Moddl Template References

FOREWORD

The forma definition of the Department of Defense High Leve Architecture (HLA)
comprises three main components. the HLA Rules, the HLA Interface Specification, and the HLA
Object Model Template (OMT). This document is intended to provide a complete description of the
essential elements of the third component of the HLA, the OMT. The other two components of the
HLA formal definition are described in the following documents:

e HLA Rulesvl1.0

* HLA Interface Specification v1.0

In addition to these reference documents, the HLA Technica Library contains other
information sources relevant to developing and executing HLA federations. The elements of the
HLA Technical Library that are particularly relevant to HLA object model development include the
following:

 HLA OMT Extensions: A description of the format and content of optional tables.
These additional tables are intended to document classes of information which are not
required for all HLA federations, but which may be useful for certain types of
applications.

* HLA Glossary: A common set of semantics for terms used in the documents of the
HLA formal definition or the HLA Technical Library.

* HLA Federation Development and Execution Process M odel: A description
of the process used to build and execute HLA federations.

* HLA OMT Use Cases: A set of case studies describing the process of developing
HLA object modelsin different communities of interest. Each case study is based on
the experiences of one of the HLA prototype federations (protofederations).

e HLA OMT Test Procedures: A set of procedures for testing compliance of an
object model with the HLA OMT.

Other elements of the HLA Technical Library may also have some relevance to HLA object
model construction. Users of this document are encouraged to browse the contents of the HLA
Technical Library to discover sources of potentially relevant information, and to gain a broader
understanding of other general HLA resources.

HLA Object Moddl Template References

HLA Object Moddl Template References

HLA Object Moddl Template References

1. PURPOSE

The Department of Defense (DOD) Modeling and Simulation Master Plan [DOD95] calls for the
establishment of a DOD-wide High Level Architecture (HLA) for modeling and simulation,
applicable to awide range of functional applications. The purpose of this architectureisto facilitate
interoperability among simulations and promote reuse of simulations and their components.

To support the general goals of the HLA, this document provides a specification of the
DOD HLA Object Model Template (OMT) for documenting key information about simulations and
federations. More specificaly, the HLA OMT provides a template for documenting HLA-relevant
information about classes of simulation or federation objects and their attributes and interactions.
This common template facilitates understanding and comparisons of different smulations and
federations, and provides the format for a contract between members of a federation on the types of
objects and interactions that will be supported across its multiple interoperating simulations. This
document specifies both the type of information content required and aformat for representing that
content for HLA object models.

HLA Object Moddl Template References

HLA Object Moddl Template References

2. BACKGROUND

2.1 Object Model Template Rationale

A standardized structural framework, or template, for specifying HLA object modelsis an essential
component of the HLA for the following reasons.

* Provides acommonly understood mechanism for specifying the exchange of public
data and general coordination among members of a federation.

* Provides acommon, standardized mechanism for describing the capabilities of potential
federation members.

» Facilitates the design and application of common tool sets for development of HLA
object models.

HLA object models may be used to describe an individual federation member (federate), creating
an HLA Simulation Object Modd (SOM), or to describe a named set of multiple interacting
federates (federation), creating a Federation Object Modd (FOM). In ether case, the primary
objective of the HLA Object Model Template (OMT) is to facilitate interoperability between
simulations and reuse of simulation components. All discussion of HLA object modelsin this
document appliesto both SOMs and FOM s unless explicitly stated otherwise.

2.2 Federation Object Models

During development of an HLA federation, it iscritical that all federation members achieve a
common understanding as to the nature or character of al required interactions between
participating federates. The primary purpose of an HLA FOM isto provide a specification of the
exchange of all public data among federates in a common, standardized format. The content of this
public dataincludes 1) an enumeration of all public object classes, 2) adescription of al interaction
types and associated parameters, and 3) a specification of the attributes that characterize the public
objects. In addition, an HLA FOM may include supplemental information as described in the HLA
OMT Extensions document. Taken together, the components of an HLA FOM establish the
“information model contract” that is necessary (but not sufficient) to ensure interoperability among
the federates.

HLA Object Moddl Template References

2.3 Simulation Object Models

A critical step in the formation of afederation is the process of determining the composition of
individual simulation systems to best meet the sponsor's overall objectives. An HLA SOM isa
specification of the intrinsic capabilities that an individual simulation could offer to potential HLA
federations. The standard format in which SOMs are expressed facilitates determination of the
suitability of smulation systems for participation in afederation.

The HLA OMT formats described in this document are generally applicable to either FOMs
or SOMs. Thus, SOMs are a so characterized in terms of their objects, attributes, and interactions.
The primary benefit from the common utilization of the OMT formats for FOMs and SOMsiis that
it provides a common frame of reference for describing object modelsin the HLA community. In
some cases, this commonality may even allow SOM components to be integrated as “piece parts’
inaFOM, facilitating rapid FOM construction.

2.4 Relation to Object-Oriented Object Models

Whilethe HLA OMT isthe standardized documentation structure for HLA object models, FOMs
and SOMs do not correspond entirely to common definitions of object models in object-oriented
(OO) development methodologies. The HLA object model combines elements of both the static and
dynamic views of traditional OO object models. The static elements of an HLA object model
include object classes, their attributes, and (optionally) associations, but do not currently include
the object operations (or methods) of OO static models. The dynamic component of an HLA object
model currently focuses on pairwise interactions between classes of objects, while OO dynamic
models typically include additional information about sequences of events and state transition
models of objects. Specification of HLA object class hierarchies tends to be driven by the interests
of subscribing simulation systems, rather than the inheritance considerations that tend to dominate
OO development models. HLA object models also differ in that they are ordinarily expected to
contain less detail than an OO devel opment object model since they are not designed for software
development but for federation development.

Not only does the HLA conception of an object model differ from that of traditional OO
object models, but HLA objects themselves also differ from the common OO conception of
objects. Responsibility for updating HLA object attributes may be distributed among different
federates in afederation, whereas OO objects characteristically associate update responsibilities
with operations that are closely tied to the object’s class definition. This difference does not
preclude OO implementations of objects withinindividual HLA federates, however, federation
objects may transcend their individual representations within specific federates, being defined by

HLA Object Moddl Template References

the composition of all the attribute values published for them by any federate. When a federate
instantiates an object, it initially owns those attributes of the object which it declared it would
publish. However, ownership of some or all of these attributes may be transferred to other
federates during the federation execution. When multiple federates own different attributes of the
same object, responsibility for maintaining the object’s state is effectively distributed across the
federation, unlike atraditional OO object whose state islocally encapsulated.

In addition to the stated differences between HLA object models and traditional OO object
models, there are al so some differences in the semantics of the terminology used to describe smilar
concepts (e.g., class, object, interaction). Although descriptions of these concepts are provided
later in this document, precise definitions of these terms can also be found in the separate HLA
Glossary document.

HLA Object Moddl Template References

HLA Object Moddl Template References

3. HLAOMT COMPONENTS

HLA object models are composed of a group of interrelated components specifying information
about classes of objects, their attributes, and their interactions. While it is possible to represent the
information content of these components in many different ways, the HLA requires documentation
of these componentsin the form of tables. The template for the core of an HLA object model usesa
tabular format and consists of the following components:

* Object Class Structure Table: To record the subclass-superclass relations
between different types of simulation/federation objects.

* Object Interaction Table: To record the types of interactions possible between
different classes of objects, their affected attributes, and the interaction parameters.

» Attribute/Parameter Table: To specify features of the public attributes of objects
and the parameters of interactionsin a simulation/federation.

« FOM/SOM Lexicon: Todefineall of theterms used in the tables.

Both federations and individual simulations (federates) are required to use al four of the
core OMT components when providing an HLA object model, although, in some cases, certain
tables may be empty. Since all object information is classified by object classes, there must be at
least one object class for any meaningful HLA object model. Thus, every HLA object model must
have a Object Class Structure Table containing at least one object class.

While federations typically will support interactions among some of the objects of its
federates, some federates (such as a stealth viewer) might not be involved in interactions, so the
Object Interaction Table may be empty for some HLA object models. It is expected that federates
will commonly have objects with attributes of interest across the federation, in which cases, their
documentation in the Attribute/Parameter Table is required. However, a federate or an entire
federation may exchange information solely viainteractions, in which case its Attribute/Parameter
Table may be empty. While either the Object Interaction Table or the Attribute/Parameter Table
may, thus, be empty, an HLA object model would not be of much use if both of these tables were
empty since such a model would not support any exchange of information between federates
except for notifications of the existence of objects.

The final HLA OMT component, the FOM/SOM Lexicon, is essential to ensure that the
semantics of the terms used in an HLA object model are understood and documented. Since there

HLA Object Moddl Template References

will always be at least one term in an HLA object model, there will always be at least one term
defined in the Lexicon, and ordinarily many more.

Any entry within any of the OMT tables may be annotated with additional descriptive
information outside of the immediate table structure. This “notes’ feature permits users to
associate explanatory information with individual table entries as required to facilitate effective use
of the data. The format for attaching a note to a particular table entry is a numerical superscript
enclosed by brackets. The note itself is identified by the corresponding superscript, and is
unconstrained in terms of format. If a set of notesis defined for agiven FOM or SOM, the notes
must be included as part of the object model description.

In addition to the four OMT components identified above, federates and federations may
also include supplemental categories of descriptive information in order to facilitate a more
complete understanding of the object model. The format and content of this optional information is
provided in the OMT Extensions Document.

The basics of each OMT component are presented in the following separate sections along
with abrief review of the rationale for including them in the OMT. The template format for each
component is provided and described. In addition, some criteria are suggested to help guide
decisions on when to include specific simulation or federation features within each of these
components for a specific HLA object model.

3.1 Object Class Structure Table

3.1.1 Purpose/Rationale

The object class structure of an HLA object model is defined by a set of relations between classes
of objects from the simulation or federation domain. An HLA object model classis a collection of
obj ects with some properties, behavior, relationships, and semantics in common. Each of the
individual objectsin aclassis said to be amember (or instance) of that class. Class namesin an
HLA object model must be defined viathe ASCII character set, and must be globally unique: no
class name in a Class Structure Table may be identical to any other class name elsewherein this
table. However, class names may include other class names as parts (textual substrings) to indicate
relations between classes.

An HLA class structure is defined in terms of hierarchical relationships between classes of
objects. Immediate superclass-to-subclass rel ationships are represented via the inclusion of the
associated class names in adjacent columns of the Object Class Structure Table. Non-immediate
superclass-to-subclass relationships are derived viatransitivity from the immediate relations: if A is

HLA Object Moddl Template References

asuperclass of B, and B isasuperclass of C, then A isa (derived) superclass of C. Superclass and
subclass play inverserolesin theserelations: if A isasuperclass of B, then B is asubclass of A.

Subclasses can be considered to be specidizations, or refinements, of their immediate
superclasses. Subclasses always inherit the characteristics (attributes and interactions) of their
immediate superclass, and may possess additional characteristics to provide the desired
specialization. These types of object class relationships (referred to as “is-a’ relationshipsin the
OO literature) may also be defined in terms of their instances: aclass A is asuperclass of class B
only if each of the instances of class B are also instances of class A. Under this conception, it is
useful to distinguish derived instances of a class from explicitly declared instances. Once an object
isexplicitly declared to be an instance of some object class, it becomes an implicit (or derived)
instance of all the superclasses of that class. For example, if the classM1_Tank is a subclass of
Tank, then an object declared to bean M1_Tank, will be a derived instance of Tank. While some
classes (such as Tank) might be designed for organizational purposes and not intended to have any
explicitly declared instances, such "abstract” classes may till have derived instances.

A classisaroot in aclass structure if it has no superclasses in that structure. A classisa
leaf of aclass structureif it has no subclasses. If each class has at most one immediate superclass,
then the class structure is said to have single inheritance and will form either atree structure or a
forest of trees, depending upon whether there are one or more roots. If some classes have more
than one immediate superclass, then the class hierarchy is said to have multiple inheritance. HLA
object model class hierarchies must be represented via single inheritance (no multiple inheritance),
although flat structures (with no subclasses) are also permissable.

In general, simulations and other federates participating in a federation execution may
subscribe to object classes at any level of the class hierarchy. By subscribing to all attributes of a
specified object class, afederate is ensured of receiving all attribute value updates of attributes
defined for that class and all of its superclasses for all instances of that class and all instances of its
subclasses. After subscribing to an object class, a federate is notified by the Discover Object
service of the Run-Time Infrastructure (RTI) of the existence of any instances of that class (or its
subclasses) which meet their discovery criteria. This service provides a class name and object 1D
(plus any available attribute values) for every such discovered object. The RTI will report objects
as belonging to the most specific object class or classes to which the federate is directly subscribed
and which meets the federate' s discovery criteria. If the federate subscribes to multiple levels, the
RTI’s discovery notification will identify an object as an instance of the lowest-level class (or
classes) to which the object belongs among those subscribed by the federate.

Object classes provide the means for federation participants to subscribe to information
about all individual instances of objects with common characteristics, such asall M1A1 tanks or

HLA Object Moddl Template References

F117A fighters. Classes are also essential to specifying the types of attributes and interactions
characteristic of ssimulation objects since these are defined relative to classes of objects, not unique
to individual instances. Basic services of the HLA RTI support subscriptions to object classes and
their attributes by federates participating in afederation execution. So the RTI needs to know the
object classes, attributes, and interactionsiif it is to perform consistency checks and to support
distribution of object information by classto the federates of a federation execution.

A class hierarchy expands the capabilities of a flat classification scheme by enabling
federates to subscribe to information about broad superclasses of objects, such as all tanks, all
attack fighters, or even all ground vehicles, air vehicles, or sea vehicles. The existence of aclass
hierarchy can simplify the subscription to class information when federates are interested in broad
classes of objects. The HLA interface supports subscription to all attributes of any classin an
object class hierarchy so that federates can easily subscribe to all and only those classes of interest.
An object class hierarchy also supports simplification of the specification of attributes, by placing
common attributes of multiple subclasses in a common superclass. Thus, class hierarchies enable
simpler management of the interests of different federates in the objects and attributesinvolved in a
federation execution.

The interest management simplification enabled by object class hierarchies also extends to
interests in interactions. An object class hierarchy supports modeling of interactions at multiple
levels of specificity with respect to the classes of interacting objects since the objectsin aclass
inherit the interactions of their superclasses. For example, a weapon fire interaction might be
specified as a single relation between any two objects in the platform class, rather than specifying a
separate interaction type for every specific pair of platform subclasses. Thus, object class
hierarchies enable specification of interaction hierarchies, which permit subscription to interactions
at levels appropriate to afederate’ s interests.

3.1.2 Table Format

The object class structure template of Table 3-1 provides aformat for representing the subclass-
superclass hierarchy of object classes. It begins with the most general object classes in the left
column, followed by all their subclassesin the next column, and then afurther level of subclasses.
The number of intermediate columns used here depends upon the needs of the federation. A
federation that uses a deeper hierarchy than illustrated by the template of Table
3-1 may add columns as needed. Finally, the most specific object classes are specified by
enumeration in the farthest right column. For cases in which the whole class hierarchy istoo

HLA Object Moddl Template References

()]

o]

©

|_

D)

S

>

o

o

>

S

pre)

(f) = | =< _ =
AN | A AN A
0w |1 un [72))
o | o o o
vV |V v VvV
Yy ly Yy ¥
A AN A A
0w |1 un [7) B))
0 |1 un 172 .)]
o |« 8
o | O (SIS)
v, |V v,V
= ~
%) [%2)
o v
_// N

N
n w
N %]
© ©
e (8]
Vi v,

<class> (<psy)

Table 3-1. Object Class Structure Table

deep to fit across asingle page, areference (<ref>) to a continuation table may be provided in the
last column. Each object class must have all of its subclasses specified in the next column to its
right or in a continuation table referenced in that column. An example of how such atable may be

[<class> (<ps>)]

[<class> (<ps>)]

[<class> (<ps>)]

HLA Object Moddl Template References

filledinis provided in Section 3.1.4, aswell asin the separate HLA OMT Use Cases document.
See Appendix A for abrief description of the notation that is used for specifying entries for this
table.Each object class in the Object Class Structure Table will be followed by information on
publication and subscription capabilities enclosed in parentheses, as designated in the template
using the abbreviated variable name <ps>. Three basic capability levels are distinguished with
respect to agiven object class:

publishable(P): The specified object class can be published by a federate using the Publish
Object Class service of the RTI. This also requires that a federate is capable of
meaningful invocations of the Register Object service of the RTI using this class's
name.

subscribable (S): A federateis currently capable of utilizing and (potentially) reacting to
information on objects in the specified class. Qualifying for this subscription category
requires the minimal capability of being able to respond appropriately to the RTI
message of Discover Object for objects of this class.

neither publishable or subscribable (N): The object class is neither publishable nor
subscribable by afederate.

These definitions apply equally to FOMs and SOMs, although an object class only needs to be
publishable or subscribable by a single federate in afederation for it to be classified as publishable
or subscribable, respectively, by the federation as awhole.

The publishable and subscribable capabilities are intended to identify meaningful
capabilities of afederation or federate with respect to the associated object classes. Althoughit is
difficult to formulate precise criteriafor distinguishing such capabilities for all possible cases, the
genera intended interpretation may be characterized. An object classis publishable by afederate in
this sense only if the federate is capable of somehow modeling the existence of objectsin this class
when it instantiates them. It is not enough to be capable of issuing callsto the cited RTI services
for publication or instantiation, which any simulation might easily accomplish for any arbitrary
object class. The publishable designation is intended to allow federates to distinguish their interna
capabilities for modeling objects of the associated classes as well as their ability to share
information about such objectsin an HLA federation. An object classis subscribable by a federate
only if the federate can make substantive use of instances of the classwhen it is notified of them by
the RTI. An object classis not subscribable by a federate if it always ignores instantiation notices
and updates for object attributes in that class. While the HLA requires that substantive capabilities
underlie designations of object classes as publishable or subscribable, the detailed determination of
what is meant by “substantive” for a particular FOM or SOM must be |eft to the discretion of their
developers.

HLA Object Moddl Template References

The publishable and subscribable capabilities may both be present for an object class, or
various other combinations, depending on the type of class. Classes that are not publishable may
be “abstract”. An abstract class has no explicitly declared instances since instantiations using its
class name are not permitted. However, abstract classes ordinarily have “concrete” subclasses,
i.e., subclasses which can be instantiated. Abstract classes can be useful for subscription
purposes, simplifying some subscriptions to information about objects in their subclasses. Abstract
classes can also simplify the specification of attributes by allowing common attributes of multiple
object classes to be specified once in acommon abstract superclass.

An individual federate must specify its publishing and subscription capabilitiesin its SOM
Object Class Structure Table by any of the four different combinations of publishing and
subscription capabilities from the set { P, S, PS, N}. An object class may be publishable without
being subscribable (P), may be subscribable without being publishable (S), or may both
publishable and subscribable (PS) for an individual federate. In some cases, afederate may even
have an abstract object classin its SOM which is neither publishable nor subscribable (N). Such an
object class might be included in a SOM to provide a convenient grouping of concrete subclasses
for purposes of defining an interaction which could be initiated by an instance of any of these
subclasses. To illustrate, an object class of Ground_Vehicle might be abstract, not published, and
not subscribable, but could provide a convenient means of defining a Ground_to_Air_Engagement
interaction (which is publishable and subscribable). Without such generad classes, a
Ground_to_Air_Engagement could not be so succinctly defined as an interaction between objects
in the classes of Ground Vehicle and Air_Vehicle.

Publication and subscription capabilities for a federation are somewhat different from those
of asingle federate. Whenever a federation supports publication of an object class, it must support
subscription as well since it would be useless to publish an object class that could not be
subscribed to within afederation. Thus, the publishable/subscribable capability designations for an
object class in a FOM are taken from the more redtricted set {S, PS, N}. This allows the
publication and subscription capabilities recorded in a FOM to distinguish between abstract classes
(S) or (N), and concrete, publishable and subscribable (PS) classes.

3.1.3 Inclusion Criteria

The criteria for designing a object class hierarchy for an HLA object model are fundamentally
different for individual federates than for federations. The Object Class Structure Table of a FOM
represents an agreement between the federates in a federation on how to classify public objects for
the purposes of federation executions. The Object Class Structure Table of a SOM is atype of
advertisement of the classes of objects which the federate can support (as publishable or

HLA Object Moddl Template References

subscribable) in potential federations. In neither case does the HLA require specific object classes
or object class hierarchies to appear in the Object Class Structure Table. However, reference to an
object class in another component (table) of a FOM or SOM always requiresitsinclusion in the
Object Class Structure Table.

For federations, multiple criteria can influence the construction of a suitable object class
hierarchy. Naturally, there must be classes for all of the types of objects that will participate
publicly in federation executions. An object is understood as participating publicly in afederation
execution whenever any of its attributes or interactions are being published during that execution.
Thus, it is afederation’s interests in information about simulation objects, their attributes, and
interactions that drive which classes should be included in afederation’s Object Class Structure
Table.

Three genera criteria have been identified that require a suitable class to be included within
the object class hierarchy of an HLA FOM:

Publication of object attributes.
Publication of object interactions.

Subscription to attributes or interactions at a higher level of object class abstraction.

Published attributes are those whose values a federate makes available to other federates during
execution. An object class must be listed in the Object Class Structure Table for any object with
public attributes since objects can be instantiated through the RTI during a federation execution
only if they are associated with aclass. The initiating object class(es) and receiving object class(es)
(if any) of every HLA interaction must also appear in the Object Class Structure Table. In fact, any
object class that is referenced elsewhere in an HLA object model (including any optiona
information as described in the HLA OMT Extensions document) must also be included in the
object class hierarchy.

While a set of concrete object classes for the most specific types of entitiesinvolved in a
federation (e.g., M1 tanks and Bradley fighting vehicles) may completely satisfy the subscription
requirements of some types of HLA applications, additional higher-level object classes will be
needed if federates wish to be able to subscribe to object information at higher levels of abstraction
(e.g., tanks, armored vehicles, or ground vehicles). For afederate to be able to subscribe to object
information at a desired level of abstraction, an object class at that level of abstraction must appear
in the Object Class Structure Table. For example, suppose a federation involved both air, land, and
sea forces of many specific types. If a particular federate did not require notification of the specific
types of land vehicles, but did require notification of land vehiclesin its area of interest, then a
suitable abstract class (such as Ground_Vehicle) would be needed to make this possible.

HLA Object Moddl Template References

While classes are clearly needed for al the public objects, many alternative class hierarchies
can be devised to cover any given set of objects. The particular demarcations and levels of classes
selected for an HLA FOM are the result of the federation development process. This selection is
driven largely by the interests of the federates in subscribing to information about classes of
objects. Object class hierarchies that may already exist for individual smulations may be
incorporated into a FOM object class hierarchy if they meet the interests of the federation as a
whole. However, since new classifications of objects may be warranted to meet federation needs
which were not previously made explicit in any of their participating federates, FOM object classes
and their subclassrelations are not constrained to be a subset of those of the SOMs of the
participating federates.

3.1.4 Example

Table 3-2 illustrates an example of how the Object Class Structure Table may be utilized to
represent a simple system. In this case, the system being represented is atypical neighborhood
restaurant. The smulation of this restaurant’s operations can be considered to be a potentia
federate in alarger-scale federation, perhaps representing the combined, coordinated operation of a
chain of restaurants. The intent of this example is not to specify a complete SOM for this system,
but rather to provide partial illustrations as to how the OMT tables may be used to capture relevant
information about the system.

In this example, a subset of a complete object class hierarchy is shown as consisting of five
object classes at the uppermost level. For this particular simulation, no class decomposition was
necessary for the first three classes. For the fourth class, asingle level of decomposition is shown
resulting in five leaf classes. For the fifth class, several levels of decomposition are shown to
illustrate a partial representation of the restaurant’s “menu”. Some of the deeper levels in this
hierarchy could have been modeled as attributes (e.g., Clam_Chowder could have been a leaf
node, with an attribute of Type to represent the enumerated values of Manhattan or New_England).
However, the modeler in this example opted to represent the most specific food types as individual
classes. In all casesin this example, abstract classes are designated as “ subscribable” only, while
the leaf nodes (concrete classes) are designated as both “ publishable” and “ subscribable”.

HLA Object Moddl Template References

Object Class Structure Table

Customer (PS)

Bill (PS)
Order (PS)
Employee (S) Greeter (PS)
Waiter (PS)
Cashier (PS)
Dishwasher (PS)
Cook (PS)
Food (S) Main_Course (PS)
Drink (S) Water (PS)
Coffee (PS)
Soda (S) Cola (PS)

Orange (PS)
Root_Beer (PS)
Appetizer (S) Soup (S) Clam_Chowder (S) Manhattan (PS)
New_England (PS)

Beef Barley (PS)

Nachos (PS)

Entree(S) Beef (PS)
Chicken (PS)
Seafood (S) Fish (PS)
Shrimp (PS)
Lobster (PS)
Pasta (PS)
Side_Dish(S) Corn (PS)

Broccoli (PS)
Baked Potato (PS)
Dessert (S) Cake (PS)

Ice_Cream (S) Chocolate (PS)
Vanilla (PS)

Table 3-2. Object Class Structure Table - SOM Example

3.2 Object Interaction Table

3.2.1 Purpose/Rationale

Aninteraction is an explicit action taken by an object that can optionally be directed toward another
object, geographical area, etc. Interactions are specified in the Object Interaction Table of HLA
object modelsinterms of the interaction structure, the classes of the initiating and receiving
objects, their affected attributes, and the parameters of the interaction. In addition, the capabilities
of anindividual federate for initiating, sensing, and reacting to such interactions are recorded for
SOMs.

HLA Object Moddl Template References

The interaction structure of an HLA object model is a hierarchical structure composed of
relations of generalization (or specialization) between different types of interactions. For example,
an engagement interaction might be specidized by air-to-ground engagements, ship-to-air
engagements, and others. This engagement interaction, then, would be said to generalize its more
specific types. If there are no generalizations of interaction types for afederation or simulation,
then the interaction structure will be flat, consisting of a set of unstructured interactions.

An interaction hierarchy in an HLA object model is designed to support inheritance in
subscriptions. When a federate subscribes to an interaction class, using the Subscribe Interaction
Classservice of the RTI, it receives notification of all interactions that occur during a federation
execution which are identified as instances of that class or as instances of any of its subclasses.
Subscribing to an engagement interaction, for example, would result in notification of all air-to-
ground engagements and ship-to-air engagements if they are subclasses of thisinteraction.

The classes of objectsinvolved in interactions of a specific type are identified along with
the type. Such classes may be designated for initiating objects as well as receiving objects.
Initiating objects are those to which credit may be given for initiating an interaction, while receiving
objects may be affected by the interaction but do not initiate it. A common example for initiating
and receiving object classes comes from weapon engagement interactions, in which the source of
the weapons fireis theinitiating object and the recipient of the weaponsfire is the receiving object.
More specifically, in an air-to-ground engagement, the initiating object class might be that of
Air_Vehicle while the recelving object classes might include Ground_Vehicle and
Cultural_Feature.

While both initiating and receiving object classes are accommodated by the HLA OMT,
there may be no specific receiving object class in some cases. For instance, if a platform isfiring
into an areainstead of at a specific target, its responsible federate simply sends the firing event
(interaction) to the current federation execution aong with associated parameters. All federates with
objects that may be affected by this event (e.g., objects in the area targeted) simply subscribe to
that particular interaction class, and decide for themselves whether instances affect them or not.
Thus, for some classes of interactions, the receiving object field of the HLA OMT interaction
component will make sense (e.g., weapon detonates at platform) while for interaction classesin
which there is no clear recipient, it may not. Initiating object classes are always required for
interactionsin the Object Interaction Table, although the initiating class may be notional (rather than
explicitly known) in SOMs when the simulation can receive but not initiate the interaction.

Furthermore, the distinctions of initiating and receiving objects may not be relevant to some
types of interactions. Some types of collisions, for example, in which two independently moving

HLA Object Moddl Template References

objects collide, may provide no basis for distinguishing an initiating and receiving object. For any
such interactions, the HLA OMT is indifferent about which classes of involved objects are
designated asinitiating and which are designated as receiving in the HLA object model.

Included with the initiating and receiving object classes designated for each type of
interaction are those attributes of these objects which may be affected by the interaction, along with
optional comments on the nature of the effects. Not all interactions will affect attributes of both
initiating and receiving object classes. The receiving object class most commonly hasiits attributes
affected by an interaction, either directly by a change in attribute value, or indirectly by influencing
future variations in that attribute’s value. An air-to-ground weapons engagement, for example,
might affect the location of atank indirectly by immobilizing it, although it does not change the
current value of its location. All such affected attributes, whether directly altered or indirectly
affected, should be documented with the interaction in the HLA object model. Additionally, the
object model may use sgquare brackets to distinguish those attributes that are only possibly affected
by an interaction from those that are always affected by a particular type of interaction. Comments
may be included to clarify the types of effects possible (e.g., immobilization) but the detailed
algorithms determining those effects are not currently included in HLA object models.

Interaction parametersin HLA object models record the parameters of an interaction. These
parameters are precisely those that are sent along with the interaction class name and interacting
object IDsin acall to the Send Interaction service of the RTI. Examples of interaction parameters
include object class names, object attributes, constants, and other user-defined datatypes.
Interaction parameters may be required to specify some features or properties of an interaction
which are needed to calculate its effects by areceiving object. The HLA object model should only
include those interaction parameters which are intended to be passed through the RTI Send
Interaction service. The names of all such interaction parameters are documented in the Object
Interaction Table. Details on these parameters, such as resolution and accuracy, may be found in
the Attribute/Parameter Table of an HLA object model. Interaction parameters are specified
separately for each interaction class in the hierarchy and are not inherited from interaction
superclasses.

Interactions are one of the principal determinants of interoperability between simulations.
Interoperability ordinarily requires some consistency in the treatment of interactions afforded by the
different federates in which they appear. Consistency among the federates of a federation requires
consistent responses to the same types of public (or cross-federate) interactions, regardless of who
owns theinitiating or affected objects. In distributed war fighting, for example, some uniformity in
treatment of engagement interactionsis commonly required to ensure afair fight between objects

HLA Object Moddl Template References

owned by different federates. Thus, it is essential that al public interactionsin a FOM be identified
and that all federatesin an HLA federation treat the specified interactions in a uniform fashion.

In addition, the RTI must know the types of interactions involved in a simulation execution
in order to support publication and subscription to their occurrences. Thus, the HLA object model
must document all of the interactions that may be sent during a federation execution so that the RTI
can recognize them. Inclusion of theinitiating and receiving object class types in the object model
facilitates determination of all those federates in afederation that must directly accommodate a
particular interaction, since different federates typicaly support ownership of different object
classes. Inclusion of the parameters of interactions in the object model serves to identify the
specific parameters that may be provided by any federate sending thisinteraction, and responded to
by any federate whose objects are recipients of its effects.

3.2.2 Table Format

The template for recording object interactions for afederation or an individual federateisillustrated
in Table 3-3. It contains five main sections:. interaction structure; initiating object class information;
receiving object classinformation; interaction parameters, and the capabilities of a federate to
initiate, sense, and/or react to the interaction. For any interaction in the table, an interaction type
(name) and initiating object class must always be specified. Interaction namesin an HLA object
model must be defined viathe ASCII character set, and must be globally unique: no interaction
name in an Object Interaction Table may be identical to any other interaction name elsewherein this
table. A recelving object class need not be specified in cases where no specia recipients are
identified. The interaction parameters may be empty if there is no need for the information they
might supply. The initiates/senses/reacts capabilities of afederate for each interaction class should
aways be specified for SOMs. FOMs must also include this class of information for uniformity.

The interaction structure is shown in Table 3-3 with two columns that are intended to
capture some of the structure of interaction classes. The first column lists the most general type of
interaction, while the second column lists more specific interactions of the type of its
corresponding first column. If there is no hierarchical structure to interactions, then this second
column is unnecessary. If asimulation or federation has a deeper structure for interactions, dot
notation should be used in the interaction name of the first column to capture all the structure

References

HLA Object Moddl Template

«[<lo1owered>]

ealy/12alqo Buinieoay

aingune
LMMEN &onﬂ:

Jsamngue,

<uoloelaiul>

x[<sseo>] x[<sseo>‘] 91N10NJ1S uolloelau|
[<1o18Wereds] «[<@Inque>’] «[<@Inquie>’]
[<sse|o>] [<uonoessyui>]
Jl(<uswiwoo>)] «[(<iuswwoo>)] <sse>
«[<ieraweleds‘] [<ainqunes] [<ainqunes]
[<iotowrereds] x[<emnquie>T] s[<ssep>1] s[<anqune>'] s[<ssejo>']
HO&.—QO @C_HQ_H_C_ _”ACO_HOM._QHE_V_
o [<sseio>] uonoeiawl
[<@inqunes] [<enquyes] _ <uon >
L [<Sse|o>] «ksseo>]
Slglaweled g 591NN
udijoesaiu ey [<ssejo>] !
ISI> oelsul
SEYRETIV PaloaY FSSeI>
ISI>
133438 sse|D SSe|D
Ml

Table 3-3 Object Interaction Table

HLA Object Moddl Template References

down to the finest level of interaction. For example, if there is a sequence of interaction subtypes,
(interaction,, interaction, _,, interaction,_;_»), where interaction,_;_;is a subtype of interaction,_;
which is a subtype of interaction,, then the compound entry “interaction;. interaction; ;" may
appear in the first column of the interaction structure, while the second column has the simple entry
“interaction;_,_3". This convention helps conserve horizontal space in an already cramped table.
See Appendix A for abrief description of the general format used for specifying entriesin thistable
template.

The next group of columns lists the classes of objects involved in the specified interaction
and those of their public attributes which may be affected by the interaction. Initiating and receiving
objects are distinguished. If there is no basis for distinguishing an initiating from a receiving
object, either of the main participating object classes may be placed in either the initiating or
receiving columns. Either initiating or receiving objects may be specified by more than one classin
cases where multiple classes participate in the same manner in an interaction but no common
superclass shares that participation. The attributes of the interacting object classes that are
potentially affected by the interaction should be listed following the object class. Comments may be
included to clarify the nature of the effects on attributes, asindicated.

The parameter column lists the parameters of an interaction. These are the same parameters
that appear in acall to the Send Interaction service of the RTI for the listed interaction. If no
parameters are ever required for a particular type of interaction, then N/A should be entered in the
parameter column to indicate this.

The primary intent of the Init/Sense/React column of the Object Interaction Table is to
categorize the current capabilities of an individual federate with respect to object interactions. Three
basic categories are used to indicate capabilities with respect to agiven type of interaction:

initiates (1): indicates that a federate is currently capable of initiating and sending
interactions of the type specified in that row of the Object Interaction Table.

senses (S): indicates that afederate is currently capable of subscribing to the interaction
and utilizing the interaction information, without necessarily being able to effect the
appropriate changes to affected objects.

reacts(R): indicatesthat afederateis currently capable of subscribing and properly reacting
to interactions of the type specified by effecting the appropriate changes to any owned
attributes of affected objects.

A capability of initiatesfor an interaction requires not just the ability to call the HLA
Publish Interaction Class service for that interaction, but also the ability to model the initiation of
the interaction and to invoke the HLA Send Interaction service for such interactions when initiated.

HLA Object Moddl Template References

A federate senses a class of interactionsif it is capable of utilizing information about such
interactions via a Receive Interaction message after having invoked the Subscribe Interaction Class
service of the RTI. It is not enough to simply be capable of receiving such interaction messages,
which any HLA compliant federate may do, but the information received in such messages must be
used somehow by the federate. For example, a stealth viewer that isincapable of determining the
effects of interactions might subscribe to them in order to adjust its display accordingly (e.g., to
show flashes during weapons fire). Such a viewer senses these types of interactions, even though
it never reactsto them, as described next.

A federatereactsto a class of interactions only if it has the capability for owning the object
ID of objectsin the receiving class and/or has the capability for publishing affected attributes of
receiving objects. In this latter case, the federate must also be capable of updating the values of
those attributes to properly reflect the effects of the interaction. Naturally, not all interactions may
require changes to attribute values, but instead may involve changes to internal states that affect
attribute value updates. Minimally, a reacts capability for an interaction class requires afederate’s
ability to respond appropriately to the Receive Interaction calls from the RTI for such interactions.
Appropriate response capabilities include the ability to alter future updates of some of the affected
attributes, i.e., to affect the behavior of the affected objects.

Merely being able to reflect changes to the attribute values of objects affected by an
interaction does not represent a reacts capability for the interaction. A simulation that simply
reflects the consequences of some interaction in virtue of reflecting changes to the attribute values
of its affected objects without being able to generate such changes itself is described as reflecting
the attribute, not reacting to the interaction.

In afederation, at least one federate must have an initiates capability and at least one
federate must have either asenses or areacts capability in order for an interaction to be included in
the FOM. Thus, a federation will always support one of the combinations IS or IR for each
interaction. An individual federate may support several more combinations of initiating, sensing,
and reacting to an interaction: {1, S, R, IS, or IR}. Any interaction in the SOM of afederate must
have one of these combinations of Init/Sense/React capabilities. If afederate cannot either initiate,
sense, or react to an interaction, then that type of interaction does not belong in its SOM.

3.2.3 Inclusion Criteria

A type of interaction should be included in a FOM whenever it can take place “across’ afederation,
i.e.,, when it is an “externd” type of interaction. Common examples of such interactions in
warfighting simulations include a variety of engagement interactions between platforms which may
be owned by different federates. It is essential for a FOM to include all external interactionsin

HLA Object Moddl Template References

order to document the types of interactions that federation members and the RTI may need to
accommodate.

When interactions are not expected to occur across a federation, they need not appear in an
HLA FOM. For example, the interactions involved in the internal dynamics of an enginein an
engineering s mulation of avehicle might not be part of aFOM if no other federate in the federation
will interact directly with the engine component.

Since HLA SOMs are intended to be developed independently of any particular federation
application, the particular relevance of any currently supported interaction class to future
federations will generally be unknown. Thus, a simulation which supports either initiating,
sensing, or reacting for an interaction class should ordinarily document that support inits SOM if it
is considered of possibleinterest to future federations.

3.2.4 Example

A representation of some illustrative interactions, based on the restaurant example introduced in
Section 3.1.4, isgiven in Table 3-4. Here, two different abstract interaction classes are each
decomposed into two lower-level classes. In the first case, the abstract Food Arrivesinteraction
classis decomposed into the Food_Arrives at Waiter and Food Arrives at_ Customer interaction
classes. Thefirst of theseis represented as an interaction between a Cook object class and a Waiter
object class, and is meant to represent the event that the cook has finished preparing the order, and
is now handing off the order to the waiter for delivery. For the cook, an attribute named
Orders_Pending will be reduced by one due to this interaction, while the waiter may have his State
attribute modified to reflect his next task of delivering the food. The two interaction parameters
Order_Number and Table Number are required by the Waiter object class to perform required
operations in his new state. Finally, asin all of the interactions illustrated in this example, it is
assumed that the restaurant federate can both initiate and react to interactions of thistype.

Theinteraction Food Arrives at Customer is meant to represent the arrival of the food at
the customer’ s table. This may trigger another change of Statefor the waiter, and will affect the
degree of Satisfaction the customer has with the meal depending on the values of the three
interaction parameters.

References

HLA Object Moddl Template

‘sidi?oay Ajreqg

PO HPCID Y

O™ S9INQLIIIY PalodjIyY mmimmm% %&wmmf
ABIR B
MO ssauljswi]
Junowy |iig seQ Aq
MO Aoeindoy Bswoisng m__mJE
(T Ag @onpay) mm>_:(~ poo
— Buipuad s1aplO Jawoisn) e
J3HHAN"RP%S Is1useD Jawoisn) g ed
TSaAlIY pooo
uonoejsies ng Aed
Jaiysed SAALLY pooH
sJalaweled 18woIsny
dl layep e
uolloe.alu] e
VIN
mm_hmm:_c_ P1e/\\
dl slels
SFERH\
waﬁ_\ 21P1S WDD\J
al SYEID
dl

SOM Example

Table 3-4. Object Interaction Table

HLA Object Moddl Template References

The abstract Pay_Bill interaction class is decomposed according to whether the customer is
paying by cash or by credit card. Although each involves an interaction between the customer and
the cashier, different attributes may be affected (as shown). In addition to specifying the hill
amount as an interaction parameter, the validity of the credit card (e.g., expiration date, credit limit)
may be needed for credit card interactions to determine if the transaction can be successfully
executed.

3.3 Attribute/Parameter Table

3.3.1 Purpose/Rationale

Each class of simulation domain objects is characterized by afixed set of attribute types. These
attributes are named portions of their object’s state whose values can change over time (such as
location or velocity of aplatform). Public attributes are those domain object attributes whose values
may be published through the RTI and provided to other federates in afederation. An HLA FOM
documents all such public attributes in the Attribute/Parameter Table. Because of the similarity
between information about attributes and interaction parameters, all interaction parameters are
documented along with attributes in the same table.

An HLA object model supports representation of the following characteristics for attributes
in the basic Attribute/Parameter Table:

* Object class * Units » Update type

* Attribute name * Resolution Update rate/Condition
 Datatype » Accuracy * Transferable/Acceptable
e Cardindity » Accuracy condition » Updateable/Reflectable

The object class specifies the class of objects to which the attribute applies. The attribute
name identifies the attribute. The datatype column specifies the datatype of each attribute. The units
entries identify the units (such as m, km, kg) used for attribute values. A resolution characteristicis
intended to record how finely the published values of an attribute may differ from each other.
When attribute values take numeric values, a minimum possible quantitative variation in attribute
value may be recorded here. When attribute values are discrete, then this fact may be recorded.

The accuracy of an attribute captures the maximum deviation of the attribute value from its
intended value in the simulation or federation. Thisis often expressed as a numeric value, but may
also be perfect for attributes which have no deviation from intended values. The accuracy condition
of an attribute specifies any conditions required for the given accuracy to hold at any given time

HLA Object Moddl Template References

during simulation/federation execution. It may consist of areference to a particular type of update
algorithm that determines the accuracy, or may be an unconditional always.

The update type and update condition characteristics specify the update policies for the
attribute. The transferabl e/acceptable characteristic provides an indication of whether ownership of
the atribute can be transferred to or accepted from different federates. Finally, the
updateabl e/reflectable characteristic is used to indicate capabilities for updating and reflecting the
attribute.

Interaction parameters are characterized in much the same way as attributes. Minor
differences include the fact that the interaction class is listed instead of the object class, and the
parameter name is listed instead of the attribute name. A more significant difference is that
parameters only utilize the first eight characteristics (object class, attribute name, datatype,
cardinality, units, resolution, accuracy, accuracy condition) since they are not subject to updates or
ownership transfer. For every interaction class identified in the Object Interaction Table, the full set
of parameters associated with that interaction class must be described in the Attribute/Parameter
Table.

The public attributes of objects must be specified in order to support subscription to their
values by other interested members of afederation. Thus, the names of attributes and associated
object classes are essential information for the RT1. Knowledge of public attributes is commonly
required for effective communication between federatesin a federation. In addition, while the
resolutions, accuracies, and update policies of attributes represent characteristics that are not
directly utilized by the RTI (as defined by the HLA Interface Specification), all are important to
ensuring compatibility between federates in a federation. A federate operating with very low
resolution, accuracy, or update rates for an attribute that it is publishing could create problems for
interacting federates that are operating at higher resolutions, accuracies, or update rates. The
specification of resolutions, accuracies, and update ratesin an HLA FOM is a part of the FOM
“contract” between federates to interoperate at the specified levels. It helps ensure a common
perception of the smulation space across federates in a federation, aiding the avoidance of
inconsistency between federates.

3.3.2 Table Format

The Attribute/Parameter Table of a FOM is designed to provide descriptive information about all
public attributes represented in a federation. In addition, it is used to capture information about
interaction parameters. The template for the Attribute/Parameter Table is provided by Table 3-5.
See Appendix A for abrief description of the syntax used for specifying entriesin thistable.

References

HLA Object Moddl Template

<Jo)ousdipigpeialul>

<uonIpuod> <uonnjosal> | <enquye> | <sser>
.. <uonpuod> <Adeinaoe> <otlfiErep>
[<az1S>]
<lalawered>
R <uonn|osal> [<azI1S>] | <@ngune>
A_._mm.m@ 2 SaR <uonipuod> <Aoeinaoes <shun> . <odirerep>
< >
<lojougEpRIaluI>
oA <UONN|0SaI> [<ez15>] | <omquues | <ssep>
s P :c_,,_.w.:cc <uonIpuod> A>om_.moomv <odArereps
| <or101> [<azIS>]
R SIS
<adfy>
<lopwered>
TS HORRES50 (opss] =gmarmes
s cels <UdrpatD> de <uojpuod> <Aopinaoe> <s)udn> <olifiEreps
i ¥ <adfr> i) B b EHRERIAL
HORAHOSOH [<akiS>] T | <ssdo>
<> cels <UQUpUOS> <uojipuod> <Aopindoe> <ofifierep> .
; : 2 ugioe.ialu|
oJeTs JIYIS> -
! uolpnjosay <sygn> (=== Isjpwered
uoJuUpuUOd <adf> xo :mcoo | :
ogIhooy /eInquny
_ Aoginooy
geTeTs [<ops>]
<> <el . <adi> <sHpn>
ajepdn arepdn poalao
ATTgU adA
< <el s -ipjed -erq
oeH+- sin
d/n gy
\'Zi

Table 3-5. Attribute/Parameter Table

HLA Object Moddl Template References

The first column, Object/Interaction, lists an object class name for attributes or an
interaction class name for interaction parameters. The classes can be chosen from any level of
generality in the class structure hierarchy. In general, it will reduce redundancy if attributes are
specified for classes at the highest point in the hierarchy to which they generally apply, although
thisis not required. For example, if all air vehicles have an attribute of minimum turn radius at
maximum speed, then it will avoid some redundancy if this attribute is specified just once for the
entire class of Air_Vehicle. Given that all object subclasses inherit the attribute types of their
superclasses, the subclasses of Air_Vehicle, such as Fixed Wing and Rotary_Wing, also have this
attribute with its specified characteristics. When a subclass requires arevision to any inherited
atribute characteristic, a new attribute must be defined for the subclass with the required
characteritics.

The second column, Attribute/Parameter, lists the public attributes of the specified object
class or the parameters of an interaction. The names assigned to attributes of any particular object
class must be defined viathe ASCII character set, and cannot duplicate (overload) the names of
attributes of any higher-level superclasses. There may be many public attributes for a single object
class and there may be many parameters for a single interaction class.

The Datatype column is used to reference the datatype of the attribute or parameter. This
datatype can be chosen from the list of permissible base attribute/parameter types (as described in
Appendix B), or it can be a user-defined datatype. User-defined datatype names must be different
than (not overload) the names of the base attribute/parameter types. The specific entry in this
datatype column may only contain the name of one of the base attribute/parameter types or an
identifier from one of the supplementary tables for enumerated and complex datatypes. When a
complex attribute or parameter consists of a homogeneous array or sequence of items which share
acommon datatype, then this common datatype may be recorded in the datatype column. When the
subtypes of a complex datatype are heterogeneous, they require use of the supplemental Complex
Datatype Table, as described in Section 3.3.5.

The Cardinality column is used to record the size of an array or sequence. A designation of
1+ in this column allows for unbounded sequences, while fixed integer values designate complex
datatypes of fixed length. Cardinalities of multi-dimensional arrays should include the sizes of
every dimension listed in their normal order of precedence. For primitive attributes and parameters
having only asingle element, aone (1) should be entered in this column.

The Units, Resolution, Accuracy, and Accuracy Condition columns are not applicableif the
datatype for an attribute or parameter is either enumerated or both complex and heterogeneous. The
reason is that these classes of information are either unnecessary (for enumerated datatypes), or are
recorded for the individual fields of complex datatypes in the Complex Datatype Table. For these

HLA Object Moddl Template References

and other datatypes in which units, resolution, and accuracy information do not apply (e.g.,
strings), the designator N/A for “Not Applicable” should be entered.

The Units column contains the units (e.g., m, km, kg) used for each attribute or parameter
whenever such units exist. Any units entered in this column specify the units of the entriesin the
Resolution and Accuracy columns that follow it.

The Resolution column may have different kinds of entries, depending upon the kind of
attribute or parameter. For attributes or parameters of scalar numerical measures, the resolution
column may contain a single dimensioned numeric entry for each row of the table. This value may
specify the smallest resolvable value separating attribute values that can be discriminated.
However, when such attributes or parameters are stored in floating point datatypes, their resolution
so defined might vary with the magnitude of the attribute value. Hence, in these cases and others, a
better sense of the resolution may be conveyed by the datatype.

The Accuracy column is intended to capture the maximum deviation of the attribute or
parameter value from its intended value in the federate or federation. Thisis ordinarily expressed as
adimensioned value, but may also be perfect for many discrete or enumerated attributes. The
Accuracy Condition column contains any conditions required for the given accuracy to holdina
given simulation or federation execution. It may consist of reference to a particular type of update
algorithm that determines the accuracy, or may be an unconditional always.

The Update Type and Update Condition columns record the update policies for an attribute.
The update type can be specified as datic, periodic, or conditional. When the update type is
periodic, then arate of number of updates per time-unit can be specified in the Update Condition
column. Attributes with a conditional update type may have the conditions for update specified in
the update condition column. For interaction parameters, the indicator N/A should be entered into
each of these columns.

The Transferable/Acceptable (T/A) column is handled somewhat differently for smulations
and federations. In afederation, if an attribute is transferable from a federate, it must be acceptable
by some federate in the federation. But a single federate may be able to transfer ownership of an
attribute without being able to accept hand-off of attribute ownership from another federate. The
basic aternatives for the Transferable/Acceptable column are asfollows:

Transferable (T): afederateis currently capable of publishing and updating attributes of the

type specified for the object class, and can transfer ownership of the attribute to another
simulation using the HLA RTI ownership management services.

HLA Object Moddl Template References

Acceptable (A): afederate is currently capable of accepting ownership of this attribute from
another federate, including the capability for meaningful continuation of attribute
updates.

Not transferable or acceptable (N): afederate is not currently capable of either transferring
ownership of this attribute to another federate or accepting ownership of this attribute
from another federate.

For an attribute of a SOM, the transferable/acceptable variable <ta> may take any of the values
fromtheset {T, A, TA, N}. InaFOM, the only valid entries in this column for federation
attributes are TA or N. For specification of object interaction parameters, this column should
contain the indicator N/A.

The Updateable/Reflectable (U/R) column of an Attribute/Parameter Table is used to
identify the current capabilities of afederate with respect to attribute updating and reflection. Two
basic categories are used to indicate capabilities with respect to a given attribute:

Updateable (U) - the federate is currently capable of publishing and updating attributes of

the type specified for the object class specified using the Publish Object Class and
Update Attribute Values services of the RTI.

Reflectable (R) - the federate is currently capable of accepting changes to this type of
attribute for objects in the specified object class for values provided from calls to the
Reflect Attribute Values service from the RTI.

For an atribute of a SOM, the updatesble/reflectable variable <ur> in the
Attribute/Parameter Table may take any of three different combinations of capabilities for updating
and reflecting, as designated by their abbreviations {U, R, UR}. In a SOM, any listed attribute
must be either updateable or reflectable or both. For federations, the appropriate entry should
aways beUR since all attributesin a FOM should be both updateable and reflectable. This column
should always contain the N/A indicator for interaction parameters.

3.3.3 Inclusion Criteria

All attributes that are designated as public, i.e., whose values are accessible to other federatesin a
federation, should be documented in the Attribute/Parameter Table of a FOM. All attributes that can
be either updated or reflected by an individual federate belong in the Attribute/Parameter Table of
its SOM. All parameters to interactions that appear in the Object Interaction Table should appear in
the Attribute/Parameter Table. If an interaction parameter is also an attribute of an object class, then
it should appear in the Attribute/Parameter Table separately as an attribute and as a parameter.

In some object model descriptions, it may be desirable to document the capability or intent
to transfer the privilege of deleting the instantiation of a particular object class from one federate to

HLA Object Moddl Template References

another. Inthis case, the attribute “ privilegeT oDel eteObject”, which is automatically created by the
RTI when instantiating an object, should be included in the Attribute/Parameter Table to document
the applicable transferability characteristics. If omitted from the table, this privilege is assumed to
be neither transferable or acceptable.

3.3.4 Example

Table 3-6 showsiillustrative examples of attributes and parameters from the restaurant application
as described in Section 3.1.4. In the first entry, the Employee object is characterized according to
the four attributes shown in the table. The datatypes specified for each of the first three attributes
were selected from the list of attribute/parameter basetypes (Appendix B), while the datatype of the
fourth attribute is user defined. Aswith all user-defined datatypes, the indicator N/A is placed in
the Units, Resolution, Accuracy, and Accuracy Condition columns. Each of these four attributesis
updated conditionally except for the Years of Service attribute, which is updated periodicaly
(yearly) on the employee’ s start date anniversary. The Update Condition column for the Pay Rate
attribute is annotated with an explanatory “note” as described earlier in Section 3. Aswith all of
the attributes and parameters shown in this example, the attributes of Employee are assumed
transferable, acceptable, updateable, and reflectable.

The Waiter subclass of Employee is shown with three attributes. These are in addition to
the four inherited attributes from its superclass. Each of the first two attributes, Efficiency and
Cheerfulness isintended to represent a numeric score (performance measure), that is assigned to
the employee at yearly performance reviews. The third attribute is intended to represent the state of
the employee (the task he/she is performing) at any given point in time during restaurant
operations. The characterization of this attribute is via an enumerated datatype which is described in
aseparate table.

The next set of entries represents the parameters associated with the interaction class
Food_Arrives at Customer. In this case, two of the three parameters are user-defined datatypes.
Since the Units through the Accuracy Condition columns do not apply for user-defined datatypes,
and the final four columns do not apply for interaction parameters, only the Datatype and
Cardinality columns have entries for these first two attributes. The third parameter uses a boolean
datatype (yes or no) to reflect whether the meal was served in areasonable amount of time.

References

HLA Object Moddl Template

c_c_c.r\.<+<§c‘.c£<+:c:\.1< — —
SaALLY P00

8dAL™INY —gmesadwe] _
Jawosny Je

uesjooq ~Aoeinooy
adAl dwal
skeme 108pad
VIN VIN souewiod8y VIN Vv/IN ssaunpoaM9
I*7IN JiNi e 7N \//N] \//N] 71N 71N MO
aolrewlopad i H T
sysel
//IN Y/N w__@% .__m(& VIN V/IN V/N VIN . MO
TS oiponad aels
skempe 199pad Kousoiyg
YN AvZINI LN /N
”:J m_ m AAAR —\
& mw»\m_ w olpouad | wous
1sanbay sheme 109ad SSaippy SSaIDDY ias
N VIIN 13 ATICTVY
/L A ESKReRYY uoys -
SWOoH
1sanbay
m.._” SISRIIILY “rodon £ = 12NN
HN . Vi adAL TJ0_sled
al uo ‘resal/T ' |mEoD
sheme 109ad
-_:‘.J /N AvZINI XZ/A XZ/N & ud _Ho.m.‘_mu—c_
HN U_Hm_ao_ ' i TR hedlegiey .
AR bI3IPUOD Ipol r»w.m_ cO@ yoopiad arey Aed aakojdw3
Nexof]
Aowinoaov 21N W@Z = ngtnv
m 7 AN S L T
/1 1oys
a1epdn mﬁ.ﬂm D: sheme 1apad /sluan : 193lqo
i L Hen . udnn| NoH
! Yeo|d
ddA1 -0say -?Em& -ereq
2 STIOTT T ad \S
HN n
L1 7 5

Table 3-6. Attribute/Parameter Table - SOM Example

HLA Object Moddl Template References

3.3.5 Attribute/Parameter Table Subcomponents

3.3.5.1 Purpose/Rationale

While the Attribute/Parameter Table provides columns for datatype specifications, it does not
provide definitive guidance for specifying complex datatypes. This section describes additiona
table formats for complex datatypes as well as for enumerated datatypes to better document their
structure and content. These tables are mandatory in situations where a federation or federate
implements the attribute or parameter datatypes for which the tables are designed.

3.3.5.2 Enumerated Datatype Table

Table 3-7 describes the format of the Enumerated Datatype Table. The first column defines the
identifier (or name) for the enumerated datatype, while the second column provides the specific
enumerated values that the identifier can assume. For instance, one potential identifier for an
enumerated datatype might be affiliation, with the values of red, blue, and neutral representing
valid enumerators. The Representation column of the Enumerated Datatypes Table allows the
federation to define the agreed-upon numerical value for the specific enumerators. Each identifier
name should appear as an entry in the Datatype column of the OMT Attribute/Parameter Table, as
was discussed in Section 3.3.2. See Appendix A for abrief description of the general format used
for specifying the types of entriesin thistable.

Enumerated Datatype Table

Identifier Enumerator Representation
<datatype> <enumerator> <integer >
<datatype> <enumerator> <integer>

Table 3-7. Enumerated Datatype Table

An example of the use of the Enumerated Datatype Table is provided in Table 3-8. Here,
the user-defined Waiter_Tasks datatype specified in the earlier Attribute/Parameter Table example
(Section 3.3.4) is characterized according to five different enumerations. Each enumeration
represents a state that a waiter can bein at any particular point in time during restaurant operations.
The numerical representation of the enumerations does not have to be given in any particular order,

HLA Object Moddl Template References

but does need to be documented to avoid inconsistent representations among different federatesin a
federation.

Enumerated Datatype Table
Identifier Enumerator Representation
Waiter_Tasks Taking_Order 1
Serving 2
Cleaning 3
Calculating_Bill 4
Other 5

Table 3-8. Enumerated Datatype Table - SOM Example

3.3.5.3 Complex Datatype Table

Table 3-9 illustrates the format for the Complex Datatype Table. In the first column, Complex
Datatype, is the identifier, or name, of the user-defined complex datatype. Complex data type
identifiers should match a datatype entry from either the Attribute/Parameter Table or from the
Complex Datatype Table itself. The next column, Field Name, provides the meansto identify each
individua field within the complex datatype. For instance, a complex datatype representing
location (with Location asits identifier) might have three sub-rows with the field names of X, Y,
and Z (for rectangular coordinates). Alternately, two sub-rows with the field names of Lat and
Long might be used. The actual specification of the fields associated with a particular identifier is
entirely driven by the requirements of the federate or federation.

The remaining six fieldsin the Complex Datatype Table are identical to the corresponding
columnsin the Attribute/Parameter Table (Section 3.3.2). The intent isto capture these classes of
information for each field within the complex data structure. This allows certain characteristics
common to all fields of a complex attribute (update type/condition, transferable/acceptable,
updateabl e/reflectable) to be specified at the composite level, while characteristics distinctive of the
individual fields of an attribute (units, resolution, etc.) are specified at thislower level.

The Complex Datatype Table may also include the names of other complex datatype
identifiers within the Datatype column for individua field names. This allows users to build

References

HLA Object Moddl Template

> >
<adAyerep>
uoinjosal
uonIpuod Aoeinooe
>
> <97ZIS> <p|au>
> >
snun <adArerep>
. . TOTTOSo]
uonIpuod Aoeinooe
>
> =
N dAyerep> aw uﬂa_ v_w_n_
=) P
ujolinjosay Alfeulpie)d) :
Jompueg omiossr S
OMIPUGD Areainay
wee e 'E On>Hmumo
>
< £97IS> 4pPIBY>
supn
DH_ _D
L=
<
4 <
< <
< <
<

Table 3-9. Complex Datatype Table

HLA Object Moddl Template References

“structures of data structures’ according to the needs of their federate or federation. See Appendix
A for abrief description of the general format used in specifying the types of entries permitted in
this table.

An example of the use of the Complex Datatype Tableis provided in Table 3-10. Thefirst
complex datatype (Address Type) is shown as consisting of four fields, each identified as an
Sring datatype. Each of the other two complex datatypes (Temp_Type and Accur_Type) consists
of three Booleanfields. The intent is to specify for each Main_Course (composed of one Entree
and two instances of Sde Dish) whether the waiter served exactly what the customer ordered
(Accuracy_OK parameter) and whether the food was the right temperature (Temperature OK
parameter). Thisinformation is used by the receiving object in the Food Arrives at Customer
interaction to determine the value of the customer attribute Satisfaction.

References

HLA Object Moddl Template

adA1 Indoy

—

uesjoog Z albap
sheme 109ad uesjoog T alban
shempe 108p1ad ueajoog adAyereq xa|dwod
_ odA] dwa]
skempe 1084ad VN ueajoog Zoaifian
skeme RETIET VIN ueajoog 1 aibap
ye o 1 1 —_
STYCTS +ITHOH VN Teoooy OUN] SSoIPPY
sheme 108u8ad ! g ! S5auD
V /TN o
n»5>>“6 HJDh_Dl T N T
awe ol
. B yonnjosay Aljeuipred Bums N P13l
O_H_ D\CS + ¥ V /TN
oelnooy Buns
SApme AO..MME%%{ <_ﬁ N /DL T 1 (a0 21R1C.
7 oHUICIC(T 4Q<_M
T T Bumns .
0h5>>“5 H)Dh_bl LN AN
V24 _/— .
silun v
V/IIN \Z
T
T

Table 3-10. Complex Datatype Table - SOM Example

HLA Object Moddl Template References

HLA Object Moddl Template References

4. FOM/SOM LEXICON

4.1 Purpose/Rationale

If interoperability between simulations is to be achieved, it is necessary not only to specify the
classes of datarequired by the templates above but also to achieve a common understanding of the
semantics of this data. The FOM/SOM Lexicon provides a means for federations to document the
definitions of all terms utilized during construction of FOMs, and for individua federates to
document the definitions of al terms provided in their SOMs.

Federations may want to develop additiona views on FOM and/or SOM data besides
simple term definitions and those explicitly defined by the OMT tables. The absence of additional
dataviews in this document is not meant to constrain federation or simulation developers from
defining whatever data views make sense for their specific application. Rather, by providing
federation/smulation developers maximum flexibility in this regard, libraries of reusable data
views (and automated tools that support them) may be constructed and made available for general
use in future applications.

4.2 Table Formats

4.2.1 Object Class Definitions

This section describes the format for defining the object classes that are specified in agiven FOM
or SOM. A simple template for describing thisinformation is provided in Table 4-1. The first
column of this table should contain the names of all object classes described in the FOM or SOM,
with the second column describing the semantics for that class. Abstract, higher-level superclasses
of instantiable subclasses should be defined as such, along with their purpose in the object class
hierarchy. Object classes that can have direct instances (concrete classes) should provide a
description of the real-world entity the classis intended to represent, along with any additional
information required to clarify the semantics of the class (e.g., fidelity). Users may optionally
include the names of the attributes of the object class, and the interactions that the class can initiate
or be affected by in the textual description of that object class.

HLA Object Moddl Template References

Object Class Definitions

Term Definition
<term name> <term definition>
<term name> <term definition>
<term name> <term definition>

Table 4-1. Object Class Definitions

4.2.2 Object Interaction Definitions

This section describes the format for defining the interactions that can occur between public object
classesin the FOM, and interactions that can be published and/or reflected at the individud
simulation level in the SOM. The structure for describing thisinformation is provided in Table 4-2.
Thefirst column of this table should contain the name of each interaction class. The second column
should provide sufficient descriptive information about the interaction class to ensure that the
semantics are clearly understood. For abstract interaction classes, this should include the rationale
for the use of the classin the interaction class hierarchy, and (optionally) the list of lower-level
subclasses it supports. For concrete (instantiable) interaction classes, the definition should include
adescription of the real-world event the interaction class is intending to represent. The names of
theinitiating and receiving objects associated with the interaction, and the parametric information
that must be included with the interaction, may also be provided.

Object Interaction Definitions

Term Definition
<term name> <term definition>
<term name> <term definition>
<term name> <term definition>

Table 4-2. Object Interaction Definitions

HLA Object Moddl Template References

4.2.3 Attribute/Parameter Definitions

This section describes the format for defining the attributes that characterize public object classes
and parameters that characterize interactions. The structure for describing this information is
provided in Table 4-3. The first column of this table should contain the name of the object class
that a given attribute belongs to, or the interaction agiven parameter is associated with. This
information is useful for associating attributes with object classes, but is also required to
distinguish between attributes that share a common name but reside in different classes. The
second column of this table should contain the name of the attribute or parameter. The third column
of this table should describe the specific characteristic of the object class or interaction that this
attribute or parameter is designed to measure. Characteristics of the attribute/parameter that are
described in the OMT Attribute/Parameter Table (units, resolution, update rate, etc.) may be
repeated in the definition if it clarifies the meaning and purpose for the term.

Attribute/Parameter Definitions
Class Term Definition
<term name> <term name> <term definition>
<term name> <term name> <term definition>
<term name> <term name> <term definition>

Table 4-3. Attribute/Parameter Definitions

HLA Object Moddl Template References

Appendix A: Table Entry Notation

The OMT table specifications for the Object Class Structure Table, Object Interaction Table, and
Attribute/Parameter Table use a subset of Backus-Naur Form (BNF) [NAURG0] to specify the
types of entries that belong in particular table cells. In BNF, the types of termsto be substituted in
the table are enclosed in angle brackets (e.g., <class>). Optional entries are enclosed in square
brackets (e.g., [(<ps>)] for the optiona Publishable/Subscribable capability entries of the Object
Class Structure Table). Any parentheses are terminal characters which should appear as shown.
Thus, the basic entry in a cell of the Object Class Structure Table, designated by <class> (<ps>),
indicates a class name followed by a Publishable/Subscribable code in parentheses. An asterisk (*)
isused to indicate a repetition of zero or more instances, such asin the last column of the Object
Class Structure Table where it indicates a variable number of entries for the most specific types of
classes, asfollows:

[<class> (<ps>)] [,<class> (<ps>)]* | [<ref>]
A vertical bar (]) is used to indicate alternative possible entries. Thus, the specification for the last

column of the Object Class Structure Table (above) indicates optional entries of either avariable
length list of classes with Publishable/Subscribable codes or areference to another table.

HLA Object Moddl Template References

HLA Object Moddl Template References

Appendix B: Attribute/Parameter Basetypes

The following list defines the complete set of basetypes that may be used to characterize object
attributes or interaction parameters.

float - IEEE single-precision floating point number

double - |EEE double-precision floating point number

short - integer valuein therange0...2" - 1

unsigned short - integer valueintherange-2°...2" - 1

long - integer valueintherange -2*...2%* - 1

unsigned long - integer valuein therange0...2% - 1

char - 8-bit quantity with anumerical value between 0 and 255 (decimal)
boolean - quantity which can only take one of the values TRUE and FALSE
octet- 8-bit quantity guaranteed not to undergo any conversion

any - permits the specification of values which can express any basetype

string - one-dimensional array of “chars’ which isterminated with aNULL (O
value) char

seguence - one-dimensional array of any basetype with two characteristics. a
maximum size (which is fixed at specification time) and a length (which is
determined at run time)

HLA Object Moddl Template References

Acronyms
ASCII American Standard Code for Information Interchange
BNF Backus-Naur Form
DoD Department of Defense
DMSO Defense Modeling and Simulation Office
FOM Federation Object Model
HLA High Level Architecture
N/A Not Applicable
OoMT Object Model Template
0.0) Object-Oriented
RTI Runtime Infrastructure

SOM Simulation Object Mode

HLA Object Moddl Template References

Refer ences

[DOD95] Department of Defense, Under Secretary of Defense (Acquisition and Technology)
(USD (A&T)), DoD Modeling and Smulation (M&S) Master Plan, Washington,
DC, October 1995.

[NAURGO] Naur, P. et a., “Report on the Algorithmic Language ALGOL 60,” Communications
of the ACM, Vol. 6, No. 1, January 1963, pp. 1-17.

Comments

Comments on this document should be sent by eectronic mail to the Defense Modeling and
Simulation Office HLA Specifications mailing address (hla_specs@msis.dmso.mil). The subject
line of the message should include the OMT section number referenced in the comment. The body
of each submittal should include (1) the name and electronic mailing address of the person making
the comment (separate from the mail header), (2) reference to the portion of this document that the
comment addresses (by page, section number, and paragraph number), (3) a one-sentence
summary of the comment and/or issue, (4) a brief description of the comment and/or issue, and (5)
any suggested resolution or action to be taken.

